Canonical heights and division polynomials

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Canonical Heights on Hyperelliptic Curves

We describe an algorithm to compute canonical heights of points on hyperelliptic curves over number fields, using Arakelov geometry. We include a worked example for illustration purposes.

متن کامل

Canonical Heights on Genus Two Jacobians

Let K be a number field and let C/K be a curve of genus 2 with Jacobian variety J . In this paper, we study the canonical height ĥ : J(K) → R. More specifically, we consider the following two problems, which are important in applications: (1) for a given P ∈ J(K), compute ĥ(P ) efficiently; (2) for a given bound B > 0, find all P ∈ J(K) with ĥ(P ) ≤ B. We develop an algorithm running in polynom...

متن کامل

Computing canonical heights using arithmetic intersection theory

The canonical height ĥ on an abelian variety A defined over a global field k is an object of fundamental importance in the study of the arithmetic of A. For many applications it is required to compute ĥ(P ) for a given point P ∈ A(k). For instance, given generators of a subgroup of the Mordell-Weil group A(k) of finite index, this is necessary for most known approaches to the computation of gen...

متن کامل

Zhang-zagier Heights of Perturbed Polynomials

In a previous article we studied the spectrum of the Zhang Zagier height D The progress we made stood on an algorithm that produced polynomials with a small height In this paper we describe a new algorithm that provides even smaller heights It allows us to nd a limit point less than i e better than the previous one namely After some de nitions we detail the principle of the algorithm the result...

متن کامل

K3 surfaces with Picard number three and canonical vector heights

In this paper we construct the first known explicit family of K3 surfaces defined over the rationals that are proved to have geometric Picard number 3. This family is dense in one of the components of the moduli space of all polarized K3 surfaces with Picard number at least 3. We also use an example from this family to fill a gap in an earlier paper by the first author. In that paper, an argume...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Proceedings of the Cambridge Philosophical Society

سال: 2014

ISSN: 0305-0041,1469-8064

DOI: 10.1017/s0305004114000371